If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2=128x
We move all terms to the left:
100x^2-(128x)=0
a = 100; b = -128; c = 0;
Δ = b2-4ac
Δ = -1282-4·100·0
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-128}{2*100}=\frac{0}{200} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+128}{2*100}=\frac{256}{200} =1+7/25 $
| 9x-15=8x-10 | | 2/4(x+9)=15 | | X^2-90x+150=0 | | 0.03(t−6)−–6=6.06 | | 5^5/5^w=25 | | x+-84=-17 | | k(-3)=4(-3)^2+1 | | 13x+2=12x+2 | | x3−8x=58 | | 127+40+90+x=180 | | -17b+33=-4-8b | | 2x-4=-1x+11 | | n+9/4=-2 | | (14x-13)=(8x+5)=180 | | 6x8=8x-4-2x | | 16=4(x+1)2 | | b4+ 14=17 | | R+3=2r | | 2x-2(-3x+3)=58 | | -6(-q+9)+3q=q-6 | | 7(-1+1x)=63 | | -5+n/12=-11 | | 3x+3=3–3x | | 3/8n+1=11 | | 2+2y=30 | | x^2-11-42=0 | | 10y^2+34=284 | | -12+4n=36 | | x/120=1392/16 | | 4)10-r1=r1-4 | | 1.23(p+2)-1.3=8.54 | | 15c+3=63 |